SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title	THEORY - SEC	COND YEAR MACHINE SH	OP
Code No.:	MCH 236		
Program:	MECHANICAL E	NGINEERING TECHNICIA	N (MACHINING)
Semester:	THREE		
Date:	AUGUST 30, 1	.987	
Author:	R. ZUCCATO /	G. WHITE	
		XX New:	Revision
APPROVED:	Chaingterson ^	Jr?~ Date	0?- '0

- 2 -

CALENDAR DESCRIPTION

THEORY - SECOND YEAR MACHINE SHOP

MCH 236

Course Name

Course Number

PHILOSOPHY/GOALS:

To reinforce trade theory calculations and formula that were covered ir year one, plus involve the student in more advanced topics and aspects of the trade to give the students a more in depth knowledge of the machinist trade so as to better equip them for work in this field or one related to it.

METHOD OF ASSESSMENT {GRADING METHOD):

Students will be assessed on attendance, initiative, co-operation and ability. Good attendance is of vital importance on any job and for this reason we stress attendance in this program. Generally, good attendance is directly related to a student's other qualities and abilities.

Theory Tests	40%
Lab Assignments	40%
Attendance	20%

TEXTBOOK(S):

ADVANCED MACHINE TECHNOLOGY, C. Thomas.

OBJECTIVES:

To bring the students to a level of competency in the knowledge and skills required in the trade. To prepare them for an apprenticeship oi some related work. To give a student the confidence required to take that step down a long and sometimes rough road to a rewarding vocation in the metal removing industry.

TOPIC DESCRIPTIONS

1. MEASOREMENT TOOLS AND OPERATIONS - 4 HOURS

- a. Gear Tooth Measurement
- b. Operate Profilemeter
- c. Surface Roughness Measurement
- d. Limit Snap Gauges
- e. Cylindrical Plug Gauges (Straight)
- f. Cylindrical Plug Gauges (Taper)
- g. Limit Thread Gauges
- h. Check Thread Pitches
- i. Checking with Radius Gauges
- j. Checking with Feeler Gauges
- k. Precision Height Gauges
- 1. Operate Optical Compartor

2. OCCUPATIONAL REFERENCE TABLES AND CHARTS - 1 HOUR

Types Format Accuracy

3. HEAT TREATING - 4 HOURS

- a. Safety
- b. Types of Furnaces
- c. Hardening Ferrous Metals
- d. Carburizing Ferrous Metals
- e. Tempering Ferrous Metals
- f« Annealing Ferrous Metals
- g. Normalizing Ferrous Metals
- h. Flame Hardening
- i- Hardness Testing

4. ENGINE LATHE - 4 HOURS

- a. Taper Turning
- b. Contoured Surfaces
- c. Threads (Acme, Sguare)
- d. Multi-Start Threads
- e. Boring in a Lathe
- f. Using a Steady Rest
- g. Using a Follower Rest

HORIZONTAL MILLING

a.	Plain Type
b.	Universal Type
c.	Type of Work Suited for Horizontal Mill
d.	Locating and Aligning Work
e.	Fastening Devices to Hold Work
f.	Types of Cutters
g.	Types of Mounting Arbours
h.	Insert Selection
i.	Rotary Table Attachment
j.	Universal Dividing Head
k«	Cutter Rotation Relative to Feed Direction
1.	Feed and Speed Selection
m.	Drilling and Boring on Horizontal Mill
n.	Fly Cutting
0-	Slide Locks
р.	Climb and Conventional Milling
a.	Digital Readout
r.	Cutting Fluids and Applications
VER	TECAL_MILL - 4 HOURS
a h	Types Type of Work Suited for Vertical Mill
D. C.	Locating and Aligning Work
d.	Fastening and Clamping Devices
e.	Cutter Selection
f.	Types of Mounting Arbours
g-	Insert Selection
h.	Manually Operated Rotary Table
1.	Cutter Rotation Relative to Feed Direction
J- k	Drilling Boring Boring and Spot Facing
1.	Slide Locks
m.	Milling Angular Surfaces
n.	Ridgitity of Set Up
atto	EACE ODINDED 4 HOUDS
SUR	FACE GRINDER - 4 HOURS
a.	Safety
b.	Operate Sine Chucks
c.	Use Laminated Chuck Blocks
d.	Operate Radius/Nangent Wheel Dressers
e.	Form Dressing a Wheel
f.	Grinding Wheel Selection
g.	Index Grinding
h.	Coolant Application
i.	Distortion of Work

j. Feed and Depth of Cut

CYLINDRICAL GRINDER - 4 HOURS

- a. Safety
- b. Type (Plain, Universal, Internal, External)
- c. Methods f Holding and Driving Work
- d» Wheel of Selection
- e. Radius/Tangent Wheel Dressers
- f. Form Dressing
- g. Taper Grinding
- h. Plunge Grinding
- i. Follower Rest
- j. Table Direction Trips Dogs
- k. Adjusting for Parallel Grinding

TOOL AND CUTTER GRINDER - 2 HOURS

- a. Set Up
- b. Safety
- c. Wheel Selection
- d. Cutting Tool Angles and Clearances
- e. Where to Sharpen
- f. How Much to Remove
- g. Tooth Indexing
- h. Table Stops

JIG BORE - 2 HOURS

- a. Set Up
- b. Tool Selection
- c. Methods of Locating and Positioning
- d. Accuracy Obtainable
- e. Feed and Speed Settings
- f. Inspection and Checks
- g. Machining Sequence

ELECTRICAL DISCHARGE MACHINING - 1 HOUR

- a. Application
- b. Electrode Selection
- c. Feed Speed Amperage and Voltage Settings
- d. Fastening Work
- e. Function of Electrolite
- f. Electrode Breakdown and Wear